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APPLYING SCREW THEORY TO ROBOT DYNAMICS* 

J.M. SELIG 

A conceptually simple approach is developed to describe rigid-body 
dynamics. A brief exposition of screw calculations is given, with the 
main emphasis on the geometrical and algebraic properties of these 
objects. It is shown how to describe the kinematics and dynamics of a 
co'mpletely rigid body using screw variables. The corresponding 
equations are derived. This technique is generalized to systems of 
completely rigid bodies joined sequentially by hinges. The Lagrange 
equations are derived for a six-link manipulator controlled by torques 
acting along the axes of its hinges. 

Earlier papers (in particular fl, 2/) tried to use a dual-vector 
formulation without explaining its geometrical nature. The geometrical 
description of classical mechanics /3, 4/ is used below. The advantage 
of this approach is that the corresponding quantities are well-defined 
geometrical objects: scalars, vectors, tensors etc. The key point of 
the paper is the recognition that velocities and momenta are different 
geometrical objects. 

I. Scra, theory and Lie algebras. We begin with a short review of the elements of screw 
theory and their connections with Lie algebras; the details can be found in 15-81. The motion 
of a rigid body is usually described by a (4x4) matrix of the form 

Rs 

I li 0 1 

where x is the translation vector and fi is a (3x3) rotation matrix, i.e. an othogonal matrix 
of special form. The set of all rigid body motions forms the Euclidean group E(3) in three- 
dimensional space. These (4x4) matrices generate a group representation which enables one to 
compute the change of the state vector under "rigid" body motions (rotations and translations). 

We will consider some motion of the rigid body. At every instant of time the con- 
figuration is specified by a group element, and finite motion is specified by a curve on the 
group manifold. 

We will transfer to infinitesimal group elements. They canbe treated as tangent vectors 
to the group at some point. Computations can be carried out using any matrix representation 
of the group. We will assume that 

is a curve on E(3) parameterized by t. The derivative at any point g = ~(6,) is simply 
equal to c$y {~~)/~~. If g is the identity element, then one can say more about the tangent 
vectors at that point. In particular, for E(3) we have RTR = 1 because of the orthogonality 
of the submatrix R. Differentiating this expression, we have rTR +RTR' =O. For the 
identity element the formula simplifies: RT +R' = 0, so that the matrix R' is antisymmetric. 
Thus the tangent vector to the identity element has the form 

n ” 

.$= I II 0 0 

where 8 is an antisymmetric 3x3 matrix and v is a three-dimensional vector. 
These matrices form a vector space. The product of two antisymmetric matrices does not 

in general give a matrix of the same form, 
to the identity element. 

but the commutator is equal to_ the tangent vector 
The commutator of two vectors is defined by Ls,, szl =a,~, --Sag. 

The tangent space to the group at the identity element thereby possesses the structure 
of a Lie algebra, which we shall denote by e(3) . The commutator is similar to multiplication, 
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but is not associative. It is instead governed by the Jacobi identity: 

[s,. [sz, SJI + [S*, ha, $11 + k-3, h-1, s,ll = 0 

From Shale's theorem it is clear that the finite screws described by Ball /9/ are the 
rigid body motions considered above. Moveover, Ball's instantaneous screws are nothing other 
than the elements of the Lie algebra. The relationship becomes clear after representing the 
elements of the Lie algebra as six-dimensional vectors: 

Because Q is an antisymmetric matrix one can use the standard antisymmetric tensor &ijk 

so that in some Cartesian coordinate system Qij = -silktik, or more explicitly, 

It is also convenient to represent screws by dual vectors 

s=o+su 

Here E is a formal symbol, called the dual unit, which commutes with vectors and 
satisfies the condition &2 = 0. 

Easy computations show that 

This means that the commutator of the Lie algebra corresponds to the dual vector product 
A. (It is unnecessary to use different notation for the dual and standard vector products 
because the sense should always be clear from the context). 

The velocity screw of a rigid body can be computed as follows. Suppose the motion of a 
rigidbody is given, as before, by the relation Y (4 where t is now the time. The derivative 
withrespect to time is Y' (4. At any instant t = t, this is a tangent vector to the 
group, but not necessarily a screw. In order to turn it into a screw, it is necessary to 
move it to the unit element by multiplying it on the right by the inverse element Y W'. 
Thus the velocity screw of the body at time t, is equal to 

s 00) = Y’ (to) Y-’ (to) = 1 R’ 00) RT (kJ - R’ (~4 RT CL,) z Vo) + z’ (c,) 
0 0 u 

In terms of dual vectors we find that 

s (kl) = 02 (kl) + s (u kl) - 0 (to) A z (LO)) 

where 01 is the usual angular velocity of the rigid body, similar to the case when one con- 
siders only the rotation relative to some fixed point (see e.g., /lo, p.8/. 

Every Lie group C has a natural adjoint representation that acts on its Lie algebra and 
appears as a result of considering conjugates in the group. The maps fg: G-+G, where f*(h)= 
ghg-’ , are smooth for all g, hEG. They all turn the identity element into itself, so 
that the Jacobian of each map at the unit element is a linar map on the Lie algebra. Because 
fsfs, = f&w, the Jacobian specifies a linear representation of the group C. 

Using the original E(3) representation one can compute the adjoint representation: 

In terms of six-dimensional vectors this equality can be written as 

where Xij = -EtjkZr while R is the same quantity as before. This gives a description of 
screw transformations under "rigid" coordinate changes. 



One can map the elements of the Lie algebra into the original group using the exponen- 
tial map 

8 * ea = 1 + s + $ 12 $- . . . + PiId -t- . . . 

If one uses a matrix representation of the Lie algebra, the degree of S can be interpreted 
as the degree of the matrix. The result of the exponential map is a matrix in the correspond- 
ing group represenation. However, irrespective of whatever representation is used, one obtains 
the same element of the group. Thus the asp has meaning even if it is not associated with a 
definite representation. 

We choose some element sEe(3). Then the set of group elements of the form & for all 
scalars 6 forms a subgroup of the group E(3). Physically this subgroup is the symmetry 
group for a lower Reuleaux pair with one degree of freedom /9/. It follows from this that 
rigid motions relative to the hinge under consideration reduce to a one-parameter subgroup. 

We will further assume that the hinge parameter increases at a constant rate. The 
relative motion of the two sides of a hinge is given by the quantity g(t)== eta and the 
velocity screw of such motion has the form g'g-' = sefSe-3S = s, i.e. is constant. 

2. !k?l?mtumand inertia. A standard characteristic of rigid body motion is a screw 
a =p+eM, which from now on is called the momentum. The kinetic energy of the body can 
be written as 

Ek = ‘1,s o a = ‘I2 (p v + Mu) 

This equation appears to be due to Ball /9/ and, although formally correct, gives a 
false representation of the nature of the momentum. The adequacy of this equation is ex- 
plained by a chance property of three-dimensional space. 

In modern mechanics, momentum is taken to be a linear function of the velocities: r* : 
e (3)-+R. The space of all such functions forms a vector space of the same dimensionality as 
the original velocity vector space. This function vector space is usually called the dual 
vector space. In order to avoid confusion with dual numbers, the six-dimensional velocity 
vectors will be called screws, and the vector momenta coscrews, In more traditional language 
screws are called covariant vectors, and coscrews are contravariant vectors. The vector space 
of coscrews will be denoted by e* (3). 

By analogy with screws one can represent a coscrew as a column-vector r* = (Iw, p)T, 
where H and p are the angular and linear momenta respectively. The expression r* (s) can 
be written as a matrix product 

r*(S)+i=,pT)~;j= 2Bk 

It is now clear that screws and coscrews are different objects, because they 
ferently under "rigid" coordinate transformations. In new coordinates s' = Hs, 
a (6x6) block matrix of the form 

II = 
H 0 /I II XR R 

Here R is a rotation matrix and Xt, = --Eij@k. This is in fact the adjoint 
of the group in its Lie algebra. 

In order that the scalar quantity r* (3) remain constant, it is necessary 
(a*)-l r* * Unlike the 
(HT)-' # H. In fact 

usual pure-rotation cases, the matrix H is not orthogonal, 

In this form the concept of a coscrew is not all that new. For example, for a robot 
with a six hinges the rows of the inverse Jacobi matrix are coscrews /ll/. They are also 
encountered in hybrid robot control problems /12/, because "efforts" are also coscrews. It 
is important to note that screws and coscrews are indeed different, because even though the 
two vector spaces are isomorphic, there is no natural isomorphism. 

Many authors have tried to represent rigid body dynamics using dual vector formalism. 
This is an attractive idea because the algebra of dual vectors is more compact. An awkwardness 
is caused by the property that if one considers velocities and momenta as dual vectors, it is 
difficult tointerpretmomenta of inertia, and usually this leads to awkward notation and 
expressions. 

change dif- 
where H is 

representation 

for p*' C.z 

so that 

We will now look at the algebraic properties of coscrews. Suppose an orthonormal vector 
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basis is chosen in RS. The corresponding choice of basis vectors in e (3) is denoted by 
i, j, k. ei, aj and ek. Then in dual notation the screw can be written as 

8 = l&i + o&J -!- w,k + U,EI + V& + v:ek 

The corresponding coscrew basis is i*,j*,k*,~~*,~~* and ek*, where 

I*(n) = Ed*= 

and all non-diagonal terms are equal to zero. 
It follows from this that the coscrew can be written as 

r* = M,i* $ M,j* $ M,k* -I- prei* i- pvcj* i- p*~~* 

We remark that e"(3) is a vector space over the reals, but not over dual numbers. The 
possibility of vector multiplication of momenta is lost, but in return we obtain a new bilinear 
operation ( }: e*(3) X e(3)-> e*(3). It is obtained from the screw Lie bracket using the relation 

<r*, %I (4 = r* (% A %) 

For example, {Ed*, ~j} = -k* because 

(et*, ej) (k) = Q* (Ej /\ k) = Ei* (@if = -1 

However, 

{El*, ej) (I) = Et* (Ej /2 I) = 0 

for all basis elements 1 + k. 
In column-vector terminology one can show that 

The latter expression is a vector product of two screws whose first and last three com- 
ponents are represented. However, the above relates to any coordinate system. 

The question arises of the interpretation of moments of inertia after the separation of 
velocities and moaenta. The answer lies in interpreting moments inertia as operators (tensorT 
turning velocities into momenta. The linear isomorphism K:e (3)-+e* (3) corresponds to the 
inertia operator. The operator K can be represented as a symmetric tensor or as a symmetric 
(6x6) matrix. Thus the correct method of obtaining coscrews from screws is given by the 
equality r* = KS. We still have not chosen K uniquely. However, for a definite rigid 
body K is precisely specified by equations from elementary mechanics. 

M = Aa -t- m(c /\ V), p = mv + m (o ,f/ c) 

where m is the mass of the body, C? is the position of the centre of mass and A is a (3x3) 
inertia tensor. We then have the formula 

Rs usual,‘1 is the unit (3x3) tensor and Cc) = --Eijtf%. The kinetic energy of the body 
is given by the relation & = (l/2} KS (s) = (li2)sTKs, where s is interpreted as a column- 
vector. From this one can discern that the coordinate change given by the (6x6) matrix 
specified above leads to the following change in the inertia tensor: 

K' = (Hr)-' KH-1 

This equation reflects a combination of the tensorial properties of the (3x3) inertia 
tensor and Steiner's parallel axes theorem. It can be thought of as an obliqueaxes theorem. 

In order to see the connection with Steiner's theorem, we consider the case when H is a 
pure translation and the origin of coordinates is at the body's centre of mass. In this case 
the computation simplifies because 

and so 
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Computation shows that Xe = xx= -xTxI where xx= is the exterior or dyadic product. 
For comparison we refer the reader to the formulation of Steiner'stheorem in the textbooks, 
(for example /lO p.85/). 

3. The Neaton-Euler equations. Having now introduced a successful notation, one can 
obtain the equations of motion for an isolated rigid body, imitating the standard derivation 
of the equations of motion with a fixed point. We begin by comparing time derivatives in a 
static inertial coordinate system C and in a system C'attached to the rigid body. At each 
instant of time there exists a rigid transformation H V) taking screw components from 
system C to C: 

Consider an arbitrary screw q or coscrew m*. Time derivatives in the chosen coordinate 
systems are written as Dq and D-q. Their relations are given by the Coriolis theorem (/lo 
p.lO/). 

In coordinate system C the screw q can be written as 

q = a_& + oJ + u,k + u,ei + uy.sj + u,Ek 

In the inertial coordinate system the screw time derivative Dq is obtained by component- 
wise differentiation. In C' coordinates we have 

q = u,'i + au'1 + o,‘k + u,‘ei + uy’~j + u,‘ek 

These new screw components are given by the relation 

i.e. the relative motion of the coordinate systems is "rigid". Differentiating the latter 
equality with respect to time, we obtain 

In terms of time derivatives in the coordinate system this result can be written as 

D’q = Dq + H’H-‘q 

Using the expression for H from Sect.2 we have 

u R’R= 0 
H’H-’ = 

X’ + XR.R= - R’R=X R.R= 

H’H-‘q=sr\q, s= n 

(where s is the velocity screw of coordinate system C' relative to Z,o is the relative 
angular velocity of the two coordinate systems, 
C' in C). 

and x is the position vector of the origin of 
Thus the relation between the time derivatives has the form 

D’q=Dq-ts/\q 

Similarly, for coscrews we have 

D’m* = Dr* f {r*, S) 

Wecan now derive the equations of motion. To do this it is sufficient to repeat the 
derivation of Euler's equations c/4, p.143/). Suppose m* = KS is the momentum coscrew of 
the rigid body. Then from Newton's laws in the inertial coordinate system we have Dm* = f*, 
where f* is a general "effort" applied to the body: f* 
torque and F is the resultant force acting on the body). 

D’m* = {m*, s) + f* 

= .(T, F)= , (where T is the resultant 
From the Coriolis theorem 

The equation of motion of a rigid body has thus been obtained in Newton-Euler form. We 
will turn it into a differential equation for S, because m* = KS, while D’ is the derivative 
in the comoving coordinate coordinate system so that D'K = 0. As a result 

KS’ = {KS, s} + f* 
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From this it is clear how to combine the equations for several rigid bodies and improve on the 
usual recursive formulation of robot dynamics which eliminates the reactions at the hinges. 
However, some caution is necessary here because the screw velocities are represented in 
coordinates tied to the body (or a link for a robot). 

4. Derivatives for kinemc&ic chains. It was shown above that the time derivatives for 
screws or coscrews in different coordinate systems are connected by simple geometrical 
relations. This is also true for other derivatives if the kinematics are known. For an open 
kinematic chain, which is encountered in a six-link robot, the situation is particularly 
simple. 

We assume that Sr (t), S, (f), . . ., SE (t) are the screws of the robot hinges. The change of 
the position and orientation of the i-th link relative to its original position at time t = 0 
is determined by some rigid map Ni. The direct kinematic map is represented as a product of 
exponential functions of angular variables 

Hi = exp (tI,S, (0)) exp (Ozse (0)). . exp (6iSi (0)) 

The corresponding velocity screw is determined by the time derivative of this expression 
(see /l/j, but can also be written in terms of hinge velocities 

pi' = Hi-Hi-: = f&l 

Here 8 is the six-dimensional vector of the hinge velocities or', 6' .*., (It and the 
matrix fi is the Jacobian of the direct kinematic map. Its value is easy to estimate, because 
Hi =I at t=O. Hence 

Hi' (O)Hi-' (0) = 01' (O)S, (0) + 0,' (O)S~ (0) + . . . + 01' (0)Si (0) 

Here we have implicitly used the matrix representation for screws, but this is unimportant 
in view of the remarks made at the end of Sect.1. The screws can be represented 
dimensional vectors. Then the columns of the Jacobi matrix will have the form ;*s= ($&: 

s,(O), . . .t si (O),O, . . .‘ 0). The Jacobians are (6x6) matrices and J is the usual manipulator 
Jacobian. No special assumptions are made about the initial configuration. Then, in general, 
the Jacobian can be written as 

The columns of the Jacobian are the current values of the hinge screws. In order to 
simplify the notation in the following, the explicit time dependence will be omitted. 

The partial derivatives can also be computed. For example, 

because the group adjoint representation gives 

si (t) = exp (e,~,(O)) . . . exp@-r (O)s+, (0))~~ (0)exp(-6i_,si_l (0)) X . . . 

X exp (-b-l (0)) 

For the coscrews one can use the coadjoint group representation, so that for the coscrew 
momentum derivatives for the i-th link we obtain 

Because the hinge screws do not depend on 0;, their time derivatives, and hence also the 
Jacobian time derivatives, are easily computed. Bearing in mind that qi' = J,W = 0,' s1 + . . l 
L 6z'Sa + . . . _t Bj'sj, we have 

Another approach to computing the Jacobian derivatives was given in /13/. 
The Jacobian time derivatives are now easily computed. For example, the column of 

derivatives J,' has the form 

ft.= kf; A sir 9; A SW f ‘ .sQ~A%?) 

We consider the time derivatives of the inertia tensor. In Sect.2 we studied the 
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influence of rigid body motion on the inertia tensor. The inertia tensor of the i-th link 
is given at any time by 

Ki (t) = (Hi’)-‘( t)K (O)Hi-’ (t) 

Here Hi is the usual product of exponentials, so that at t=o the time derivative 
of Ktis equal to 

Ki’ (0) = (-&‘s,~ - 6%’ StT - . . . - et’StTf Ki (0) + 

In this equation 
velocity,screw of the 

irj (o)f-+e; - 8,e; - . . . - stej) 

the screws are to be understood as (6x6) 
i-th link as 

These computations do not depend on the original position 

Ki'= _Oi'r Ki -K& 

either, and so we have 

The relation between q’ and Q' is given in coordinates as follows: 

matrices. We write the (6x6) 

if then Q' = 1; :I, where V,= -ei+b 

5. &zgrum&ammechanicsfa~ a siz-link robot. We consider the kinetic energy Ek of a 
chain of rigid bodies joined by hinges with one degree of freedom. In view of the remarks 
made in Sect.3, the generalized kinetic energy of the manipulator can be written as 

where mt* is the coscrew momentum of the i-th link. 
The conjugate momentum for the coordinate Si is computed using the fact that it is 

already known in terms of the Jacobian's rows. The result is rather simple because most of 
the termsdo not depend on Bi: 

This relation means that the conjugate momentum corresponding to the angle of the i-th 
hinge can be found by computing the sum of the hinge momenta starting with the i-th, at the 
i-th hinge screw. 

hle consider the derivatives of the kinetic energy with respect to the screw angles. 
Applying the relations found for derivatives of screws and coscrews, we have 

-$f=++.$ml_(q;)=$- 9 .* 
,$ 

m, (5 A 4,) + mj* (si /I (Qi - 4;)) = 

Combining these results, we obtain an expression for the generalized momenta associated 
with the generalized coordinates Oi: 

In the case when gravity is not taken into account, the latter expression gives the 
hinge momenta directly. However, as a rule, one must take into account the gravitational 
contribution to the potential energy. The potential energy can be found if the heights of 
the centres of mass of the links are known. For convenience we write pi = (mict,c,), where m, 
is the mass of the i-th link and ci is the coordinate vector of the centre of mass. If we 
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denote by pi(O) the value of pi in the original configuration, then the later values 
will be 

pi = axp (%sl (0)). . . exp @tsi (O)h 03 

Here the screws are understood to be (4x4) matrices. 
We assume that gravity acts in the -k direction. Then the potential energy of the robot 

can be written as 

where eb = (k,O)T is a four-dimensional vector and g is the acceleration due to gravity. The 
partial derivatives give the values of the torques associated with the hinges: 

aE,_ 
de, - gpttTsi $Pj 

The screw is again taken to be a (4x4) matrix. However one notes that a typical term 
on the right-hand side can be written with the help of three-dimensional vectors: 

6RTSiPj = k (m@j A CI + mJ@J) 

The expression simplifies if we use the duality between the screws and the "efforts". 
One can write the typical term as 

- WJ* (pi) = mjgk (0, // cj + vi) 

/I mjgcj A k 
wj* = --,,,jgk 

where W,” is the effort due to gravity acting on the j-th link, with the hinge screws again 
represented by six-dimensional vectors. 

Combining all these results and the Lagrange equations we obtain a relation for the 
generalized momenta of the hinges: 

% = ,$m;' W + mj* ((Q; + qi’) ASi) + Wj* (4 

They can also be written solely in terms of velocity screws and momenta of inertia. To 
do this one must find the time derivatives of the coscrew momenta. Because ml* = Kflj’ 
we have 

mj*’ = K,‘q,’ + Kjq~” 

Usinq the relations for the time derivatives of the inertia tensor obtained in Sect.4 
we have 

Here we used the 
The value of the 

Thus in terms of 

ml*’ = Kyg,” - Qj’TK,q,’ 

equalities Q’q’ = q’ /\ 9’ = 0. 
coscrew momentum at the hinge screw is equal to 

ml*’ (pi) = qFTKjSf - qiTKj (qi A pi) 

the link velocities the Euler-Lagrange equations take the form 

These equations look particularly simple and elegant. However, they can be written in 
terms of hinge coordinates, for which we note that qr” = J,V + J&V. After some calculations 
the equations of motion take the form 
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6. Concluding remarks. The basic aim of this paper has been to show the simple ex- 
pressions can be obtained for quantities used in robot dynamics. If the robot is a standard 
chain of rigid bodies, united by hinges with one degree of freedom, these expressions can be 
computed directly. 

When the work was begun, there was hope that the use of screw theory could, from the 
computational point of view, be preferable to the usual approach. Unfortunately, these hopes 
were not fulfilled, although comparison is somewhat difficult because it is not totally clear 
what should be included in the operation count. One could somewhat improve the algorithm 
being used by introducing a "gravitational screw" g=(o, gk)T, so that W,* = Kjg. Then the 
potential term in the equations of motion can be included in the term containing the acceler- 
ations: 

~~ = i (q,--;)T+ + q,‘TKj (qi’ A Si) 

,=i 

The results obtained are important from the theoretical point of view, because everything 
written above has a geometrical interpretation. No assumptions about the hinges, other than 
that each one has a single degree of freedom, have been made. The author also tried to use 
the smallest number of coordinate systems, usually one. There is hope that this will enable 
problems connected with robot design to be investigated. For example, how does one design 
a robot so as to avoid or minimizethe dynamical interaction between the links? We assume 
it is necessary to guarantee that the momentum of the i-th hinge T, does not depend on the 
accelerations of the other hinges. It is easy to verify that this means that ~PE#3,‘83,’ = 0, 

i#j. Making use of previously obtained results we have 

This sets bounds on the possible positions of the hinges and masses. 
It is now clear what one must do to perform a systematic study of the problem. 

The author also hopes that the results obtained can be extended to the case of elastic 
hinges and thereby lead to a simplification of the treatment models that are important in 
practice. 
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